
Malaysian Journal of Mathematical Sciences 18(1): 185–208 (2024)
https://doi.org/10.47836/mjms.18.1.11

Malaysian Journal of Mathematical Sciences

Journal homepage: https://mjms.upm.edu.my

Fractional Block Method for the Solution of Fractional Order Differential
Equations

Noor, N. M.∗1,2, Yatim, S. A. M.1, and Ibrahim, Z. B.3

1School of Distance Education, Universiti Sains Malaysia, 11800 USM Gelugor, Penang, Malaysia
2School of Quantitative Sciences, College of Arts and Sciences, Universiti Utara Malaysia,

06010 UUM Sintok, Kedah, Malaysia
3Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia,

43400 UPM Serdang, Selangor, Malaysia

E-mail: nursyazwanimn15@gmail.com
∗Corresponding author

Received: 13 October 2023
Accepted: 23 January 2024

Abstract

The construction of the fourth-order 2-point Fractional Block Backward Differentiation Formula
(2FBBDF(4)) to solve the fractional order differential equations (FDEs) is presented in this pa-
per. Themethod is developed using the fractional linearmultistepmethod (FLMM) linkedwith
the linear difference operator. This paper aims to approximate the fractional order problems via
2FBBDF(4), which is normally used to solve ordinary differential equations. The criteria for the
stability of the method are analyzed in order to solve FDE problems. Consequently, the method
is determined to be A-stable for different values of α within the interval (0, 1). Then, Newton’s
iteration is implemented in this method to solve the problems. Multiple numerical examples of
linear, nonlinear, and system FDEs are provided for the scenario where the order α lies within
the range of 0 and 1. Ultimately, the numerical results confirm that the proposed method per-
forms at a similar level to the existing methods.

Keywords: linear multistep method; fractional block method; fractional order; single order
FDEs; stability.
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1 Introduction

Fractional calculus is a branch of mathematics that deals with the study and applications of
arbitrary order integrals and derivatives. Fractional calculus and fractional differential equations
(FDEs) have recently been used in a variety of real-world applications, such as financial markets,
insurance, epidemiology, biological reactive system, drugs concentration, and other fields of sci-
ence and technology [3]. In this article, we examine the initial condition of FDEs expressed as:

CDα
t0y(t) = f(t, y(t)), t ≥ t0,

y(t0) = y0,
(1)

where 0 < α < 1 is the fractional order. The symbol CDα
t0 is used to denote as the Caputo α

derivative operator which is defined as,

CDα
t0y(t) =

1

Γ (1− α)

∫ t

t0

y′(τ)

(t− τ)
α dτ, (2)

where Γ(·) is the gamma function [6].

According to the research done by Garrappa [13], CDα
t0y(t) = RLDα

t0 (y(t)− y(t0)) where
RLDα

t0 (y(t)) where the expression is the Riemann-Liouville derivative operator which can be de-
fined as,

RLDα
t0y(t) =

1

Γ (1− α)

(
d

dt

)∫ t

t0

y(τ)

(t− τ)
α dτ. (3)

Let us assume that the function f(t, y(t)) fulfills the Lipschitz conditions required for the existence
and uniqueness of the solution of Equation (1), as explained in [10].

In literature, Diethelm and Ford [10] discussed the existence, uniqueness, and structural sta-
bility of solutions to nonlinear FDEs. Researchers have studied various numerical techniques for
solving FDEs. Galeone and Garrappa [12] investigated the explicit and implicit approaches of
the fractional Backward Differentiation Formula (BDF) for solving FDEs. Rehman and Khan [29]
introduced the Legendre wavelet method as an approach to estimate the solution of FDEs. Tong
et al. [31] have demonstrated the efficacy of the Euler numerical method in approximating so-
lutions for ordinary differential equations (ODEs) and other types of equations. Therefore, they
enhanced the classical Euler’s method by developing the improved Euler’s method, which is used
to solve functional differential equations [1, 33]. In 2015, Biala and Jator [4, 5] introduced the k-
step Implicit Adams Methods (IAMs) and the k-step Continuous Fractional BDF method. These
methods utilise derivatives of the Caputo type to approximate the FIVP (1).

Zabidi et al. [34] developed the fractional linear multistep method (FLMM) by applying the
principles of Adams Methods to solve fractional differential equations (FDEs). Hattaf [16, 17]
introduced a novel mixed fractional derivative that incorporates both singular and non-singular
kernels. This derivative is utilised to solve FDEs. In recent times, there has been an increased focus
on solving FDEs in the field of research [11, 32] because of the presence of stiff problems. Thus, it
was imperative to develop efficient techniques for solving stiff systems of FDEs [2]. Comparatively,
FDEs are more practical for modelling application problems than integer order equations. This is
because FDEs allow for the description of memory effects, as stated in [15]. Mathematical models
that employ FDEs include the Prey-Predator Model [14], the SIR Model [15], the Corona Virus
Disease Model [28], the HIV Model [26], and the Pharmacokinetics Model[27].
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According to Lambert’s research study [22], the implicit method is more precise than the ex-
plicit method when it comes to solving stiff problems. Consequently, numerous research studies
on the numerical solution of stiff systems have been published, with the implicit linear multistep
method being commonly used. The block method of the BDF method is the widely recognised as
the most popular numerical method used to solve stiff Ordinary Differential Equations (ODEs),
as opposed to the Euler and Adam-Moulton methods. Therefore, the objective of this paper is
to address the FDEs by adapting the BBDF method, which has demonstrated efficacy in solving
stiff ODE problems [19]. The 2-point BBDF was first introduced by Ibrahim et al. [19], where the
r-point BBDF is developed for solving first-order ODEs. In 2013, Suleiman et al. [30] studied the
2-point BBDF by increasing the order of the method from third order to fourth order for solving
stiff ODEs. Musa et al. [25] introduced a novel block method that incorporates a free parameter
to regulate the stability of the method. The 2-point BBDF method was adapted to a 3-point BBDF
method for the purpose of solving stiff ODEs. Presently, multiple investigations are being con-
ducted on the BBDF technique for resolving stiff ODEs [24, 8]. Due to the widespread popularity
and demonstrated effectiveness of the BBDFmethod in solvingODEs, we aremotivated to explore
its potential for solving FDEs bymodifying the BBDFmethod. Moreover, up until now, there have
been no studies that have employed the BBDF method for solving the FDEs.

There has been a lot of focus on developing FBDF for the numerical approximations of FDEs
over the past 10 years. This is because FDEs occur in several models. The FBDFmethodswere pro-
posed and investigated in [7, 18, 35]. Most of themethods have been developed using convolution
quadratures independently, as proposed by Lubich [23] in the form:

yn = f(tn) + hα
n∑

j=0

ω
(α)
n−jg (tj , yj) + hα

n∑
j=0

ω
(α)
nj g (tj , yj) , (4)

whereh is the step size,ω(α)
n−j is the convolutionweight, andω

(α)
nj is the starting quadratureweights.

One of the most challenging aspects of formulating the proposed method is determining the
convolution weights for the initial point, as it requires consideration of a future point. Hence,
inspired by the prior studies, our objective is to develop a novel numerical technique for estimat-
ing the solution of FDEs using an alternative approach other than the Lubich’s method (4). The
numerical method is derived from the FLMM by Galeone and Garrappa [12], and it relies on the
utilization of Taylor’s series expansion. This numerical method is limited in its ability to approxi-
mate the solution for fractional orders, α in between 0 and 1 only.

The paper is structured in the following manner: In Section 2, we will outline the derivation of
the proposed method by building upon the concept of the BBDFmethod. In Section 3, we will ex-
amine the stability properties of the derived method to confirm its convergence and stability. The
utilization of the Newton’s iteration technique is succinctly explained in Section 4. Subsequently,
we provide numerical illustrations to clarify our theoretical findings, and the examination of these
results will be presented in Section 5. Finally, Section 6 presents the conclusion of this paper.

2 Derivation of the Method

The construction of the fourth-order 2-point Fractional Block Backward Differentiation For-
mula (2FBBDF(4)) is demonstrated in this section. The method is devised with a fixed step size,
h, and involves using three back points, xn−2, xn−1 and xn to estimate the values of yn+1 and
yn+2 at point xn+1 and xn+2 simultaneously. Then, the method is constructed using the general
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formula of FLMM by Galeone and Garrappa [12],

n∑
j=0

γjyn−j = hα
n∑

i=0

βif (tn−j , yn−j) , (5)

and the classical BBDF by Ijam et al. [20] in the form of,

4∑
j=0

γj,iyn+j−2 = hαβifn+i, (6)

where γj,i and βi are the real parameters, hα is the step length, and i = 1, 2 for yn+1 and yn+2,
respectively. The procedure of the derivationwill involve the FLMM (6) associatedwith the linear
difference operator Lh [12], which is defined by,

Lh [y(t), t, α] =

4∑
j=0

γj,iyn+j−2 − hαβifn+i

=

4∑
j=0

γj,iyn+j−2 − hαβC
i Dα

t0yn+i

= γ0,iyn−2 + γ1,iyn−1 + γ2,iyn + γ3,iyn+1 + γ4,iyn+2 − hαβC
i Dα

t0yn+i

= 0,

(7)

where i = 1, 2. Expanding yn−2, yn−1, yn, yn+1, yn+2, CDα
t0yn+1, and CDα

t0yn+2 using Taylor’s
series expansion [12] about tn in Equation (7) are given below

yn−2 = yn + (−2h)y′n +
(−2h)2

2!
y′′n +

(−2h)3

3!
y′′′n +

(−2h)4

4!
y(4)n + · · · ,

yn−1 = yn + (−h)y′n +
(−h)2

2!
y′′n +

(−h)3

3!
y′′′n +

(−h)4

4!
y(4)n + · · · ,

yn = yn,

yn+1 = yn + hy′n +
(h)2

2!
y′′n +

(h)3

3!
y′′′n +

(h)4

4!
y(4)n + · · · ,

yn+2 = yn + (2h)y′tn +
(2h)2

2!
y′′n +

(2h)3

3!
y′′′n +

(2h)4

4!
y(4)n + · · · ,

CDα
t0yn+1 =

(h)1−α

Γ(2− α)
y′n +

(h)2−α

Γ(3− α)
y′′n +

(h)3−α

Γ(4− α)
y′′′n +

(h)4−α

Γ(5− α)
y(4)n + · · · ,

CDα
t0yn+2 =

(2h)1−α

Γ(2− α)
y′n +

(2h)2−α

Γ(3− α)
y′′n +

(2h)3−α

Γ(4− α)
y′′′n +

(2h)4−α

Γ(5− α)
y(4)n + · · · .

(8)
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To obtain the formula for the first point, yn+1, we substitute Equation (8) into Equation (7) when
i = 1;

γ0,1

[
yn + (−2h)y′n +

(−2h)2

2!
y′′n +

(−2h)3

3!
y′′′n +

(−2h)4

4!
y(4)n + · · ·

]
+ γ1,1

[
yn + (−h)y′n +

(−h)2

2!
y′′n +

(−h)3

3!
y′′′n +

(−h)4

4!
y(4)n + · · ·

]
+ γ2,1 (yn) + γ3,1

[
yn + hy′n +

(h)2

2!
y′′n +

(h)3

3!
y′′′n +

(h)4

4!
y(4)n + · · ·

]
+ γ4,1

[
yn + (2h)y′tn +

(2h)2

2!
y′′n +

(2h)3

3!
y′′′n +

(2h)4

4!
y(4)n + · · ·

]
− hαβ1

[
(h)1−α

Γ(2− α)
y′n +

(h)2−α

Γ(3− α)
y′′n +

(h)3−α

Γ(4− α)
y′′′n +

(h)4−α

Γ(5− α)
y(4)n + · · ·

]
= 0.

(9)

To eliminate the arbitrary nature of the coefficients, we then normalize the value of γ3,1 = 1, which
result in,

γ0,1

[
yn + (−2h)y′n +

(−2h)2

2!
y′′n +

(−2h)3

3!
y′′′n +

(−2h)4

4!
y(4)n + · · ·

]
+ γ1,1

[
yn + (−h)y′n +

(−h)2

2!
y′′n +

(−h)3

3!
y′′′n +

(−h)4

4!
y(4)n + · · ·

]
+ γ2,1 (yn) + (1)

[
yn + hy′n +

(h)2

2!
y′′n +

(h)3

3!
y′′′n +

(h)4

4!
y(4)n + · · ·

]
+ γ4,1

[
yn + (2h)y′tn +

(2h)2

2!
y′′n +

(2h)3

3!
y′′′n +

(2h)4

4!
y(4)n + · · ·

]
− hαβ1

[
(h)1−α

Γ(2− α)
y′n +

(h)2−α

Γ(3− α)
y′′n +

(h)3−α

Γ(4− α)
y′′′n +

(h)4−α

Γ(5− α)
y(4)n + · · ·

]
= 0.

(10)

Then, by factorizing, we gather all of the coefficients of yn, y′n, y′′n, y′′′n , . . . in Equation (10) and
collecting terms gives,

Lh [y(t), t, α] = C0,1yn +

m∑
k=1

hkCk,1y
(k)
n + hm+1Rm+1, k = 1, 2, 3, . . . , (11)

where the remainder Rm+1 is derived from Taylor’s expansions and the constant;

C0,1 := γ0,1 + γ1,1 + γ2,1 + 1 + γ4,1 = 0,

C1,1 := −2γ0,1 − γ1,1 + 1 + 2γ4,1 −
(

(1)1−α

Γ(2− α)

)
β1 = 0,

C2,1 :=
(−2)2

2!
γ0,1 +

(−1)2

2!
γ1,1 +

(1)2

2!
+

(2)2

2!
γ4,1 −

(
(1)2−α

Γ(3− α)

)
β1 = 0,

C3,1 :=
(−2)3

3!
γ0,1 +

(−1)3

3!
γ1,1 +

(1)3

3!
+

(2)3

3!
γ4,1 −

(
(1)3−α

Γ(4− α)

)
β1 = 0,

C4,1 :=
(−2)4

4!
γ0,1 +

(−1)4

4!
γ1,1 +

(1)4

4!
+

(2)4

4!
γ4,1 −

(
(1)4−α

Γ(5− α)

)
β1 = 0.

(12)
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The systems of (12) are solved simultaneously to obtain the coefficient values of γ0,1, γ1,1, γ2,1,
γ4,1 and β1.

γ0,1 =
α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

, γ1,1 = −
α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

,

γ2,1 =
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

, γ4,1 = −
α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

,

β1 =
3Γ (5− α)

2α3 − 22α2 + 77α− 72
.

(13)

Next, we substitute all the values in Equation (13) into Equation (7), we get

α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

yn−2 −
α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

yn−1

+
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

yn + yn+1 −
α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

yn+2

+
3Γ (5− α)

2α3 − 22α2 + 77α− 72
hαCDα

t0yn+1 = 0.

(14)

The approximation solution for the first point of themethod, yn+1, is then obtained by rearranging
Equation (14). The same procedure is applied to obtain the coefficient values for the second point,
yn+2, when i = 2 and γ4,2 = 1. Hence, the general corrector formula of the 2FBBDF(4) method is
obtained as follows:

yn+1 = −
α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

yn−2 +
α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

yn−1

−
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

yn +
α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

yn+2

− 3Γ (5− α)

2α3 − 22α2 + 77α− 72
hαCDα

t0yn+1,

yn+2 =
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144

yn−2 −
8α
(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

yn−1

+
12
(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144

yn +
8α
(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

yn+1

+
12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
hαCDα

t0yn+2.

(15)

3 Stability and Its Properties

This section examines the convergence and stability of method (15) as the fractional order, α,
varies between 0 and 1. This paper primarily examines the values of α, specifically 0.7, 0.8, 0.9,
and 1.0. Hence, the following definitions will be considered in the analysis of the method.

Theorem 3.1. [22] The method (5) is convergent if and only if it satisfies both consistency and zero sta-
bility.
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Definition 3.1. [22] The FLMM (5) is considered consistent if its order is greater than or equal to p, where
p ≥ 1.

Definition 3.2. [12, 22] The difference operator (8) and the corresponding FLMM (5) are considered to
have an order of p if, in (12), C0 = C1 = · · · = Cp = 0, Cp+1 ̸= 0 where,

C0 (n, α) =

n∑
j=0

γj ,

Cp (n, α) =
1

p!

n∑
j=0

(j − 2)
p
γj −

1

Γ (p+ 1− α)

n∑
j=0

(j − 2)
p−α

βj , p = 2, 3, . . . .

(16)

Next, we will demonstrate the procedure for determining the order of the method in equa-
tion (6) when n = 4;

C0 (4, α) =

4∑
j=0

γj =

[
0
0

]
,

C1 (4, α) =

4∑
j=0

(j − 2) γj −
1

Γ (2− α)

n∑
j=0

(j − 2)
1−α

βj =

[
0
0

]
,

C2 (4, α) =
1

2!

4∑
j=0

(j − 2)
2
γj −

1

Γ (3− α)

n∑
j=0

(j − 2)
2−α

βj =

[
0
0

]
,

C3 (4, α) =
1

3!

4∑
j=0

(j − 2)
3
γj −

1

Γ (4− α)

n∑
j=0

(j − 2)
3−α

βj =

[
0
0

]
,

C4 (4, α) =
1

4!

4∑
j=0

(j − 2)
4
γj −

1

Γ (5− α)

n∑
j=0

(j − 2)
4−α

βj =

[
0
0

]
,

C5 (4, α) =
1

5!

4∑
j=0

(j − 2)
5
γj −

1

Γ (6− α)

n∑
j=0

(j − 2)
5−α

βj =

[
e1
e2

]
̸=
[
0
0

]
.

(17)

According to the computation in Equation (17), it has been proven that the method is of fourth
order due to the presence of the error constant at C5. Therefore, the method (15) is consistent
(Refer Definition 3.1), and the table below displays the error constants for each value of α.

Table 1: Error constant for the method (15) for α = 0.7, 0.8, 0.9, and 1.0.

α e1 e2

0.7 113323

4041140
− 644854

10760965

0.8 3679

102620
− 1462

20545

0.9 39961

868380
− 284578

3421655

1.0 3

50
− 12

125
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Definition 3.3. [22] The FLMM (5) is considered to be zero stable when all roots of the initial character-
istics of the polynomial have moduli equal to or greater than one, and each root with a modulus of one is a
simple root.

The achievement of perfect stability is the fundamental challenge in the numerical solution of
stiff systems. In this section, the stability properties of the proposed method will be investigated
by considering the following linear test problem [34];

CDαy(t) = λy(t), λ ∈ C,
y(t0) = y0,

(18)

where λ is the eigenvalue, the true solution is denoted by y(t) = Eα (λ (t− t0)
α
) y0, and Eα(·)

represents the Mittag-Leffler function.

Definition 3.4. [21] The Mittag-Leffler function is formally defined by the following expression:

Eα(t) =

∞∑
k=0

(
tk

Γ(αk + 1)

)
, α ∈ C. (19)

Eα(t) will be transformed into et when α = 1.

Equation (18) is then substituted into the numerical method in Equation (15), yielding the
following form;

yn+1 = −
α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

yn−2 +
α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

yn−1

−
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

yn +
α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

yn+2

− 3Γ (5− α)

2α3 − 22α2 + 77α− 72
hαλyn+1,

yn+2 =
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144

yn−2 −
8α
(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

yn−1

+
12
(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144

yn +
8α
(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

yn+1

+
12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
hαλyn+2.

(20)
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By letting the real values hαλ = h̄ equation (20) will be,

yn+1 = −
α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

yn−2 +
α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

yn−1

−
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

yn +
α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

yn+2

− 3Γ (5− α)

2α3 − 22α2 + 77α− 72
h̄yn+1,

yn+2 =
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144

yn−2 −
8α
(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

yn−1

+
12
(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144

yn +
8α
(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

yn+1

+
12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
h̄yn+2.

(21)

Rearranging equation (21) into a matrix form yields,
1 +

3Γ (5− α)

2α3 − 22α2 + 77α− 72
h̄ −

α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

−
8α
(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

1− 12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
h̄


yn+1

yn+2



=


α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

−
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

−
8α
(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

yn−1

12
(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144


yn−1

yn



+


0 −

α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

0
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144


yn−3

yn−2

 ,

(22)

which is equivalent to AYm = BYm−1 + CYm−2 where,

A =


1 +

3Γ (5− α)

2α3 − 22α2 + 77α− 72
h̄ −

α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

−
8α
(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

1− 12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
h̄

 , Ym =

yn+1

yn+2

 ,

B =


α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

−
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

−
8α
(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

yn−1

12
(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144

 , Ym−1 =

yn−1

yn

 ,

C =


0 −

α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

0
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144

 , Ym−2 =

yn−3

yn−2

 .

(23)
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From Equation (23), we calculate for the stability polynomial of the method by using the formula,

π
(
r; h̄
)
= det

(
Ar2 −Br − C

)
, (24)

where r denotes the stability polynomial’s root, yielding,

π(r; h̄) = det(Ar2 −Br − C)

= det



1 +

3Γ (5− α)

2α3 − 22α2 + 77α− 72
h̄ −

α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

−
8α
(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

1− 12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
h̄

 r2

−


α
(
2α2 − 14α+ 21

)
2α3 − 22α2 + 77α− 72

−
3
(
5α2 − 35α+ 48

)
2 (2α3 − 22α2 + 77α− 72)

−
8α
(
α2 − 5α− 8

)
α3 − 11α2 + 16α+ 144

yn−1

12
(
5α2 − 35α+ 12

)
α3 − 11α2 + 16α+ 144

 r

−


0 −

α
(
α2 − 8α+ 13

)
4 (2α3 − 22α2 + 77α− 72)

0
α
(
α2 − 7α− 12

)
α3 − 11α2 + 16α+ 144


 .

(25)

From Equation (25), we determined the zero stability by substituting h̄ = 0which yield:

1. when α = 0.7,

π (r; 0) =
660

235189649
r
(
422927r3 − 310164r2 − 113841r + 1078

)
, (26)

and the roots, rs, are 0, 1,−0.2758 and 0.0092.

2. when α = 0.8,

π (r; 0) =
30

430271
r
(
18254r3 − 13413r2 − 4902r + 61

)
, (27)

and the roots, rs, are 0, 1,−0.2772 and 0.0120.

3. when α = 0.9,

π (r; 0) =
620

17675769
r
(
39768r3 − 29781r2 − 10154r + 167

)
, (28)

and the roots, rs, are 0, 1,−0.2669 and 0.0157.

4. when α = 1.0,

π (r; 0) =
197

125
r4 − 153

125
r3 − 9

25
r2 +

1

125
r, (29)

and the roots, rs, are 0, 1,−0.2442 and 0.0208.

Based on the calculation above, it is proved that the method is zero stable at various values of α
since all the roots lie within |rs| ≤ 1. Hence, the method (15) is convergent (Refer Theorem 3.1).
Next, we plotted the stability regions of the method for different values of α by using Maple soft-
ware and presented them as in Figure 1. Referring to the following definitions, we investigated
the stability region of the method.
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Definition 3.5. [22] The method (15) is deemed to be absolutely stable in a region,R for a given h̄ if each of
the roots, rs of the stability polynomial, π

(
r; h̄
)
= 0, satisfies the condition |rs| ≤ 1, where s = 1, 2, . . . , k.

Definition 3.6. [22] The method (15) is said to be A-stable if the region of absolute stability encompasses
the complete left-hand half-plane R

(
h̄
)
< 0.

Figure 1: Stability regions for 2FBBDF(4) with different fractional order, α.

Next, we conducted numerical tests to confirm the stability region of the graphs in Figure 1.
Referring to the graphs, the stable regions lie beyond the boundaries defined by the blue, red,
green, and black lines for α = 0.7, α = 0.8, α = 0.9, and α = 1.0, respectively. Based on the
definition provided in Definition 3.6, it can be concluded that the method (15) with α = 0.7, 0.8,
and 0.9 are A-stable and α = 1.0 is almost A-stable. This condition is valid for α ∈ (0, 1). In
addition, from the graphs, we also found that as the value α decreased, the regions of absolute
stability became larger. Hence, the restriction on the chosen starting points is wider.

4 Execution of the Method

In this section, the execution of the 2FBBDF(4) method (15) using Newton’s iteration is pre-
sented. It also introduces the following notation,

e
(i+1)
n+j = y

(i+1)
n+j − y

(i)
n+j , j = 1, 2, (30)

where i is used to define the iteration, y(i+1)
n+j is denoted as the (i+1)th iteration values of yn+j and

e
(i+1)
n+j is the differences between iteration values of yn+j . Consequently, the Newton iteration has
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the following form:

y
(i+1)
n+j = y

(i)
n+j −

(
Fj

(
y
(i)
n+j

))(
F ′
j

(
y
(i)
n+j

))−1

, j = 1, 2. (31)

Substituting Equation (30) into Equation (31) yields the following formula;

F1 = yn+1 −
α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

yn+2 +
3Γ (5− α)

2α3 − 22α2 + 77α− 72
hαfn+1 − ς1,

F2 = yn+2 −
8α
(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

yn+1 −
12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
hαfn+2 − ς2,

(32)

where ς1 and ς2 are the bakcvalues. Hence,

e
(i+1)
n+1 = −

(
yn+1 −

α
(
α2 − 10α+ 27

)
4 (2α3 − 22α2 + 77α− 72)

yn+2 +
3Γ (5− α)

2α3 − 22α2 + 77α− 72
hαfn+1 − ς1

)
(
1 +

3Γ (5− α)

2α3 − 22α2 + 77α− 72
hα

∂fn+1

∂yn+1

)

e
(i+1)
n+2 = −

(
yn+2 −

8α
(
α2 − 13α+ 48

)
α3 − 11α2 + 16α+ 144

yn+1 −
12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
hαfn+2 − ς2

)
(
1− 12(2α−1)Γ (5− α)

α3 − 11α2 + 16α+ 144
hα

∂fn+2

∂yn+2

) .

(33)

For simplicity, Equation (33) is arranged in matrix form,e(i+1)
n+1

e
(i+1)
n+2

 =−

y(i)n+1 +
3Γ(5−α)

2α3−22α2+77α−72h
αf

(i)
n+1 − ς1 − α(α2−10α+27)

4(2α3−22α2+77α−72)yn+2

− 8α(α2−13α+48)
α3−11α2+16α+144y

(i)
n+1 y

(i)
n+2 −

12(2α−1)Γ(5−α)
α3−11α2+16α+144h

αf
(i)
n+2 − ς2


1 + 3Γ(5−α)

2α3−22α2+77α−72h
α ∂fn+1

∂yn+1
0

0 1− 12(2α−1)Γ(5−α)
α3−11α2+16α+144h

α ∂fn+2

∂yn+2


−1

.

(34)

The derivedmethod is utilised in predictor-corrector computation, specifically in the PECEmode.
In this mode, P represents predictor, C represents corrector, and E represents evaluation of the
function f , given x and y. Following are the approximate calculations in PECE for yn+1 and yn+2;

1. P (Predict): Compute the predictor formula, y(p)n+j .

2. E (Evaluate): Dαyn+j = f
(
xn+j , y

(p)
n+j

)
.

3. C (Correct): Compute the corrector formula, y(c)n+j .

4. E (Evaluate): Dαyn+j = f
(
xn+j , y

(c)
n+j

)
.

This computational process involved two-stage Newton’s iteration to approximate y(c)n+1,n+2;
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Step 1: Compute e(i+1)
n+1,n+2 = A−1B, where

A =

1 + 3Γ(5−α)
2α3−22α2+77α−72h

α ∂fn+1

∂yn+1
0

0 1− 12(2α−1)Γ(5−α)
α3−11α2+16α+144h

α ∂fn+2

∂yn+2

 ,

B =

−y
(i)
n+1 −

3Γ(5−α)
2α3−22α2+77α−72h

αf
(i)
n+1 + ς1

α(α2−10α+27)
4(2α3−22α2+77α−72)yn+2

8α(α2−13α+48)
α3−11α2+16α+144y

(i)
n+1 −y

(i)
n+2 +

12(2α−1)Γ(5−α)
α3−11α2+16α+144h

αf
(i)
n+2 + ς2

 .

Step 2: Using the value e(i+1)
n+1,n+2 from Step 1, the corrected value for y(i+1)

n+1,n+2 are computed.

Step 3: Then, e(i+1)
n+1,n+2 = A−1B are solved for second stage iteration.

Step 4: The updated values of y(i+1)
n+1,n+2 are obtained from the last stage of iteration (2nd stage).

5 Numerical Experiments

The numerical examples of fractional order differential equations are solved in this section
using the 2FBBDF(4) method (15) which was previously introduced. In order to perform a sig-
nificant quantitative comparison, wewill assess the obtained results in relation to several methods
described in the existing literature. C programming was used to compute the numerical results
and the absolute error, ABERR is evaluated using the formula:

ABERRi = |yi(t)− yi(tn)| , (35)

where yi(t) is the exact solution and yi(tn) is the approximate solution. The notations below are
considered in the following tables;

h : Step size
ABERR : Absolute error
Method : Method of comparison
2FBBDF(4) : Fourth-order 2-point Fractional Block Backward Differentiation Formula
FDE12 : Fractional Differential Equation code (FDE12.m) - available in MathWorks
ADM : Adomian Decomposition method [2]
FDTM : Fractional Differential Transform method [2]
NPSM : Numerical Power Series method [9]
FEAM3 : Fractional Explicit Adams Method order 3 [34]
FRPS : Fractional Residual Power Series method [11]
RKHS : Reproducing Kernel Hilbert Space method [11]

Therefore, the following examples are considered to validate the proposed numerical method.
Example 5.1. A basic linear fractional order problem [34] is given as follows,

Dαy(t) = −y(t), y(0) = 1, t ∈ [0, 2],

with the given true solution: y(t) = Eα (−t)
α, where Eα (z) is:

Eα(z) =

∞∑
k=0

(
zk

Γ(αk + 1)

)
,

known as the Mittag-Leffler function.
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Example 5.2. An initial value problem of fractional order equations [34] is considered as follows,

Dαy(t) =
Γ(2α+ 1)

Γ(α+ 1)
tα − 2

Γ(3− α)
t2−α +

(
t2α − t2

)4 − y4(t), y(0) = 0, t ∈ [0, 1],

with the given exact solution is

y(t) = t2α − t2.

Example 5.3. Consider the following nonlinear Abel FDEs [2],

Dαy(t) = 4y − y3, y(0) =
1

2
, t ∈ [0, 0.4],

with the given exact solution when α = 1 is

y(t) = 2

(
e8t

e8t + 15

) 1
2

.

Example 5.4. An application problem of Riccati FDEs is considered as follows [34],

Dαy(t) = −y2 + 1, y(0) = 0, t ∈ [0, 1],

with the given exact solution when α = 1 is

y(t) =
e2t − 1

e2t + 1
.

Example 5.5. The problem of non-linear stiff system of fractional order equations by [11] are given as
follows,

Dα1y1(t) = −1002y1 + 1000y22 , y1(0) = 1,

Dα2y2(t) = y1 − y2 − y22 , y1(0) = 1, t ∈ [0, 2],

with the given exact solution of the system when α1 = α2 = 1 as,

y1 = e−2t, y2 = e−t.

Table 2 displays the absolute error, ABERR, of 2FBBDF(4) (Example 5.1) for various fractional
order values, α, and step sizes, h. According to the table, the absolute error reaches its maximum
value as h declines, with a tolerance ranging between E-02 and E-03. Nevertheless, the inaccuracy
remains acceptable as it diminishes proportionally to the reduction in h. Figure 2 displays the
plotted approximation solutions for 2FBBDF(4) and FDE12, with α = 0.9 and the time interval, t,
ranges from 0 to 2. The curves indicate that 2FBBDF(4) converges to 0, which is the exact solution,
in contrast to FDE12. ABERR is subsequently computed based on the solution shown in Figure 2.
The performance of themethods is then evaluated by plotting the efficiency curves of log(ABERR)
versus t in Figure 3, which is derived from the solution in Figure 2. Both methods yield errors that
are less than zero, indicating that the solutions are comparable to the exact solution.

Table 2: Absolute error of 2FBBDF(4) for Example 5.1 as α = 0.7, 0.8, and 0.9.

h α = 0.7 α = 0.8 α = 0.9

1.00E-02 3.25090E-02 1.98974E-02 1.02975E-02
1.00E-04 2.73835E-02 1.90526E-02 9.69568E-03
1.00E-06 2.73391E-02 1.90451E-02 9.68725E-03
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Figure 2: Graphs of the approximate solution for Example 5.1 when α = 0.9.

Figure 3: Efficiency curves of Example 5.1 when α = 0.9.

The value of α = 0.7, 0.8, and 0.9 are used to approximate the solution of Example 5.2, and the
absolute error of 2FBBDF(4) is displayed in Table 3. According to the table, the value of ABERR
reduces as the value of h lowers. Next, we plot the behavior of the graphs, as depicted in Figure 3,
to demonstrate the performance of the techniques with α = 0.9. The plots demonstrate that as t
grows, the approximation 2FBBDF(4) closely matches the exact answer.
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Table 3: Absolute error of 2FBBDF(4) for Example 5.2 as α = 0.7, 0.8, and 0.9.

h α = 0.7 α = 0.8 α = 0.9

1.00E-02 1.01710E-02 4.77856E-03 9.62624E-04
1.00E-04 4.01658E-04 7.54718E-05 8.79391E-06
1.00E-06 1.46376E-05 2.36251E-06 1.09551E-07

Figure 4: Graphs of the approximate solution for Example 5.2 when α = 0.9.

Table 4 displays the approximated solution of Example 5.3 using theADM, FDTM, and 2FBBDF(4)
techniques with α = 0.9, as well as the ABERR of the solution with α = 1.0. From the table, we il-
lustrate the performance of themethodswhen α = 0.9 and α = 1.0 in Figures 5 and 6, respectively.
According to Figure 5, we observed that the 2FBBDF(4) method closely approximates the actual
solution, in comparison to the ADM and FDTMmethods. Meanwhile, in Figure 6, the 2FBBDF(4)
and NPSM exhibit a consistent ABERR value in comparison to the FDTM method. The ABERR
for the FDTMmethod increases as t increases.
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Table 4: Numerical results for Example 5.3.

t Method Solution (when α = 0.9) ABERR (when α = 1.0)
0.00 ADM 5.0000E-01 -

FDTM 5.0000E-01 0.0000E+00
2FBBDF(4) 5.0000E-01 0.0000E+00

NPSM - 0.0000E+00
0.10 ADM 8.05543E-01 -

FDTM 8.05406E-01 1.14000E-12
2FBBDF(4) 7.03189E-01 1.66416E-07

NPSM - 1.57000E-04
0.20 ADM 1.15315E+00 -

FDTM 1.14926E+00 7.77000E-08
2FBBDF(4) 9.58533E-01 1.86205E-07

NPSM - 1.85000E-04
0.30 ADM 1.47702E+00 -

FDTM 1.47387E+00 4.76000E-05
2FBBDF(4) 1.24360E+00 1.88182E-07

NPSM - 1.69000E-04
0.40 ADM 1.62231E+00 -

FDTM 1.83959E+00 -
2FBBDF(4) 1.51164E+00 2.05255E-07

NPSM - 1.20000E-04

 

 

Figure 5: Graph of the approximate solution of Example 5.3 when α = 0.9.
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Figure 6: Efficiency curves of Example 5.3 when α = 1.0.

Fractional Riccati Differential Equation (FRDE) was defined by Zabidi et al. [34] as an appli-
cation problem considered in this article. The problem is resolved by employing the 2FBBDF(4)
method and comparing it to the FEAM3 method. The results are presented in Table 5, and the
efficiency curves are depicted in Figure 8. As shown in the figure, 2FBBDF(4) produces a reduced
ABERR in comparison to FEAM3. In addition, the approximation solutions to Example 5.4 for
different values of α are illustrated in Figure 7.

Table 5: Method of comparison for Example 5.4 as α = 1.0 in terms of ABERR.

t Method ABERR

0.2 FEAM3 5.0289E-07
2FBBDF(4) 9.3634E-09

0.4 FEAM3 2.0725E-06
2FBBDF(4) 1.1229E-07

0.6 FEAM3 2.8479E-06
2FBBDF(4) 3.0807E-07

0.8 FEAM3 3.3549E-06
2FBBDF(4) 5.3024E-07

1.0 FEAM3 3.6079E-06
2FBBDF(4) 7.0278E-07
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Figure 7: Efficiency curves of Example 5.4 when α = 1.0.

Figure 8: Graph of the approximate solution of Example 5.4 when α = 0.7, 0.8, 0.9, and 1.0.

Next, we compare the absolute error, ABERR, obtained from the existing method with the
2FBBDF(4) for Example 5.5. The results are presented in Table 6, and the simulations of the data
are illustrated in Figure 9. The figure shows that all the methods give good performance since the
ABERR produced is within the tolerance, but the 2FBBDF(4) gives better prediction as compared
to the FRPS and RKHS methods because the ABERR for the 2FBBDF(4) is getting smaller as the t
increases. It shows that themethod ismore stablewhen solving stiff systemproblems. In addition,
we plotted the approximation solution of 2FBBDF(4) for the problem with different fractional
orders of α in Figure 10, as the exact solution is provided along with it.
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Table 6: Method of comparison for Example 5.5 as α1 = α2 = 1.0 in terms of ABERR.

t Method y1(t) y2(t)

0.0 FRPS 0.00000e+00 0.00000e+00
RKHS 0.00000e+00 0.00000e+00

2FBBDF(4) 0.00000e+00 0.00000e+00
0.4 FRPS 5.55112e-17 0.00000e+00

RKHS 1.20214e-06 1.23629e-06
2FBBDF(4) 1.09827e-08 1.41156e-08

0.8 FRPS 5.55112e-16 5.55112e-15
RKHS 1.28401e-06 2.47593e-02

2FBBDF(4) 3.97618e-10 9.46857e-09
1.2 FRPS 1.70219e-12 0.00000e+00

RKHS 9.10870e-07 1.19237e-01
2FBBDF(4) 3.75421e-09 6.35140e-09

1.6 FRPS 6.92656e-10 5.55112e-16
RKHS 5.59235e-07 2.62552e-01

2FBBDF(4) 4.08416e-09 4.08416e-09
2.0 FRPS 7.27625e-08 3.75810e-14

RKHS 3.18632e-07 4.38604e-01
2FBBDF(4) 3.44232e-09 2.85784e-09

(a) y1(t) (b) y2(t)

Figure 9: Efficiency curves of Example 5.5 for α1 = α2 = 1.
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(a) y1(t) (b) y2(t)

Figure 10: Graph of the approximate solution of Example 5.5 when α = 0.7, 0.8, 0.9, and 1.0.

6 Conclusion

In conclusion, a new numerical method known as the fourth-order 2-point Fractional Block
Backward Differentiation Formula (2FBBDF(4)) has been proposed in this paper. The analysis of
stability showed that the derivedmethod (15) isA-stable for the fractional order, α < 1 and almost
A-stable for α = 1. The numerical examples were solved using the proposed method (15), and it
was discovered that the 2FBBDF(4) method can achieve comparable results to the existing meth-
ods for solving FDEs. Therefore, the fractional order differential equations of linear, non-linear,
and systems can be solved using the 2FBBDF(4) method as an alternative solver. In addition, the
2FBBDF(4)method is suitable as the FDE solver, especiallywhen dealingwithmodels that require
memory effects, such as dynamical systems.
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